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A method for the numerical solution of a system of coupled, nonlinear elliptic partial 
differential equations is described, and the application of the method to the equations 
governing steady, laminar natural convection is presented. The essential feature of the 
method is the conversion of the equations to a parabolic form by the addition of false 
time derivatives, thus, enabling a marching solution, equivalent to a single iterative 
procedure, to be used. The method is evaluated by applying it to a well known two- 
dimensional problem and some examples of its use in three dimensions are given. 

1. INTRODUCTION 

The work described herein was developed during a study of the buoyancy-driven 
motion of a viscous incompressible fluid in an enclosure. Typical of such problems 
are the transfer of heat across the cavity of a double-glazed window and the cooling 
of a turbine blade using a closed thermosyphon. In many such practical applica- 
tions, the motion is steady and laminar, and the resultant governing equations 
are elliptic. Numerical procedures must be employed for their solution. In general, 
the motion is also three-dimensional, but because the numerical procedures 
involve a double iteration scheme which is lengthy and expensive, it has almost 
invariably been assumed that a two-dimensional model is adequate. In order to 
explore the validity of this assumption, an efficient solution procedure for three- 
dimensional problems was sought. 

There are two approaches which may be adopted. We may solve the set of 
equations written in what are called the primitive variables, viz., velocity com- 
ponents and pressure. Typical of this approach is the work of Williams [l] and 
Chorin [2]. Alternatively, the equations may be formulated in terms of vorticity 
and a vector potential. The only solutions obtained in this way that we have seen 
are those of Aziz and Hellums [3] and Holst and Aziz [4], although the correspond- 
ing two-dimensional formulation (in terms of vorticity and stream function) has 
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been widely used by, for example, Torrance [S], Wilkes and Churchill [6] and 
de Vahl Davis [7]. In two dimensions, this approach is attractive because, first, it 
reduces the number of equations to be solved from four to three, and, second, it 
ensures that the continuity equation is automatically satisfied; as discussed by 
Piacsek and Williams [8], failure to satisfy continuity using the primitive variable 
equations can lead to convective instability. Moreover, the difficulties associated 
with pressure boundary conditions are avoided, the corresponding conditions for 
vorticity being much simpler and more easily applied. Finally, Aziz and Hellums 
[3] found that the iterative procedure based on the primitive variable equations 
was less satisfactory in its convergence behavior. 

In either approach, the steady solution may be found by directly solving the 
steady equations, or by solving the unsteady equations, all but one of which 
become parabolic. We may then proceed through time until the solution ceases to 
change significantly. When the steady equations are solved, a double iterative 
scheme is necessary since they are elliptic and coupled. When the unsteady equations 
are solved, the outer iteration is replaced by a progression through time. Although 
the number of equations involved in the inner iteration is now less, the corrective 
procedures necessary to ensure that the transient is faithfully followed (e.g., 
Pearson [9] and Thomas and de Vahl Davis [lo]) still cause the solution process to 
be lengthy. 

In very many situations, however, we are interested only in the final steady state, 
and all of the foregoing procedures are, therefore, inefficient. If the steady solution 
exists and is unique, it may be obtained more efficiently by the introduction into 
the governing equations of false transient terms. 

This is the basis of the method we propose here. The false transient terms lead to 
a set of parabolic equations which are solved by marching through a distorted 
time; no inner iterations are involved and the rate of transient convergence can be 
enhanced by the use of different time steps for the different equations. The true 
transient solution is lost, but at large times the transient terms decay and the true 
steady solution is recovered. 

We have applied the method to a number of natural convection problems. For a 
two-dimensional situation, extensive tests on the accuracy and speed of the method 
have been performed. It was found that the method was at least one and perhaps 
two orders of magnitude faster than a conventional, double iterative procedure. 
We have also solved a number of three-dimensional problems, obtaining solutions 
typically in about 100 “time” steps, the total computer time being of the order 
of ten minutes on an IBM 360/50 for 1331 mesh points. Finer meshes have been 
used; the solution time varying roughly in proportion to the number of mesh 
points. 

In the next section, the Navier-Stokes and energy equations for three-dimensional 
flow of a viscous incompressible fluid are transformed into equations for vorticity 
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and vector potential. The boundary conditions are discussed, and the false transient 
terms introduced. In Section 3, the finite difference equations and the alternating 
direction implicit method used for their solution are described. The reduction to 
two dimensions follows in Section 4. In Section 5 a comparison is made between 
the method of the false transient and the method applied by Rubel and Landis 
[ll] to a two-dimensional natural convection problem. Some results for three- 
dimensional problems are given in Section 6, although a detailed discussion is 
beyond the scope of this paper, the principal purpose of which is to describe the 
solution procedure. 

2. THE FAISE TRANSIENT EQUATIONS 

It is common in studies of natural convection to make the Boussinesq [12] 
approximation, i.e., to assume that the effect of temperature on density is confined 
to the body force term of the momentum equation and that otherwise the thermo- 
dynamic and transport properties of the fluid are independent of temperature and 
pressure. This implies that the fluid is essentially incompressible, and that its 
equation of state is 

P = POU - BIT - TOI), 

where p, /3 and T denote respectively the density, volumetric expansion coefficient, 
and temperature of the fluid, and the subscript denotes some reference state. 
Further, making the reasonable assumption that viscous dissipation is negligible, 
the equations of motion and energy may be written 

DU 
Dt= -VP/PO - KT - T&E + vV% 

v*ii=o, (2) 

DT 
- = KV=T, 
Dt 

where C is the velocity vector, p is the perturbation of static pressure from the first 
order hydrostatic value (p,,gz), v and K are the kinematic viscosity and thermal 
diffusivity, respectively, g is the gravitational vector, and t is time. Using the vector 
identity, 

(V x ii) x ii = ii * vii - w/2, 
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together with the continuity equation (2), Eqs. (1) and (3) may be written 

aii 
at= -(v x ii) x U - VP/p, - /!l(T - To) g + vV%, 

ar 
at= --v . (CT) + KV~T, 

where P denotes the total pressure p + poU2/2. 
Using L (a dimension of the cavity), L2/ K, K/L, and po~2/L2 as scale factors for 

length, time, velocity, and pressure, respectively, and introducing 19 = (T - To)/ 
(Tl - T,,), where To and Tl are fixed reference temperatures, Eqs. (4) and (5) 
become 

au 
at= 

-(V x ii) x U - VP - RaPr 19; + Pr V2ti, (6) 

ae 
at= --v * (ia) + WV, 

where all the variables have been made nondimensional, and where Ra = 
g/?(T, - T,,)Ls/~v is the Rayleigh number and Pr = V/K is the Prandtl number. 

Since G is soleniodal, it can be expressed in the Eulerian form [13] 

where the surfaces, 

ii = Vf x vg, 

.f=c1, (9) 

g = c2 3 (10) 

are vector sheets of U. (Although the functions f and g would permit a useful 
geometric interpretation to be made, their direct use would necessitate the numeri- 
cal solution of highly nonlinear equations, which is computationally difficult.) 
We may now add the term V x Vh (which is identically zero) to the right side 
of (8) which, upon rearrangement, leads to 

ii = V x (fVg + Vh) = V x F, say. 

It is always possible to choose h such that V * !? vanishes. In such a case, p is a 
solenoidal vector potential for U. 

Since vorticity is the curl of the velocity vector, it follows that 

~=vxii=vxvxF=v(v*!?-v2P 
= -v2y 
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since F is solenoidal. Equations (2) and (4) may now be replaced by the set 

a% 
at= 

-V x (< x i?) - RaPr(V x @) + Pr V2%, 

0 = v2P +- 5, (12) 

ii=vx!P. (13) 

Equations (1 l)-( 13), together with (7), are to be solved for the velocity and tempera- 
ture fields. 

The method of the false transient makes two simple changes to this set of 
equations: a fictitious transient term is inserted on the left side of (12), and the 
time derivatives in (11) and (12) are given modified coefficients. The equation 
set then becomes 

Pr al --= 
(Y< at 

-V x (% x G) - RaPr(V x &) + Pr V2[, 

1 a!F --= 
o1$ at v2p + 5, 

a8 
at= -v * (ia) + we. 

If a steady state exists, clearly it will be reached using either set of equations. 
The method is a generalization of the device mentioned by Dorodnicyn [14] 

and employed in the artificial compressibility technique of Chorin [ 151. In contrast 
with the latter, however, this method uses a purely artificial construction and could 
be applied to any set of elliptic equations. The reasons for these changes will be 
discussed in Section 3.2. 

We now turn to consider the boundary conditions for these equations, which 
are to be solved in the three-dimensional region bounded by the planes x = 0, 1, 
y = 0, Y, z = 0, 2, as illustrated in Fig. 1. 

The specification of boundary conditions for the vector potential has been 
fully discussed by Hirasaki and Hellums [16]. For a plane, impermeable surface, 
the vector is normal to the surface and its gradient is zero. For the surface x = 0, 
for example, 

(aw4 = 0, $2 = $3 = 0, 

where !? = #1i + #2j + $&. At nonslip surfaces, the tangential derivatives of 
the velocity components are zero. Thus, at x = 0, the vorticity components become 

51 = 0, c2 = -awlax, c3 = au/ax, 

where { = cli + c2 j + l&k, and E = ui + vj + wk. 
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FIG. 1. The solution region and coordinate orientation. Thermal boundary conditions are: 
at x = 0,l: 0 = x; at y = 0, y: a@?y = 0; at z = 0,Z: al?/az = 0. All surfaces are stationary, 
impermeable, and nonslip. 

Aziz and Hellums [3] used these boundary conditions.(lHowever, there is a 
difficulty associated with their use. For if the velocity derivatives are approximated 
using two-point forward differences, the accuracy is only of order dx; if three- 
point forward formulas are used, a very fine mesh would be required if a boundary 
layer exists; and finally, if three-point central differences are used, the boundary 
conditions on the tangential velocity components do not appear explicitly in 
the difference approximations. Since this is, of course, desirable, the following 
alternative formulation has been used. Because 

w = @,/ax - qWy, (16) 

the condition on 5, at x = 0 becomes 

c2 = -ay2/a9 + ayqaxay. 

Assuming $I to be sufficiently smooth, 

L = -awax + az*llayax = -a2*$ax2, (17) 

and since 
v = a+l/a2 - a*dax, 

cs = -aqqax2. 
(18) 

In the application of these conditions to the finite difference approximations, as 
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discussed in the next section, the integrals of c2 and 5, are required; values of 
a&/ax and @,/ax at the boundary are, therefore, needed. From (16), 

wax = away + W, 

and similarly 
a*,lax = a*,laz - V. 

For stationary walls, v = w = 0 and, therefore, 

x-o 
a*3 alCI1 and ax = - 

r-0 az s=o * 

The complete set of boundary conditions on p and [ are shown in Table I. 
The conditions on 8 are, in comparison, quite simple. We may specify the 

temperature or the heat flux at a surface, thereby imposing a condition on 0 or 
its normal derivative. In the problems described later, we will specify differing 
uniform temperatures on two opposite vertical surfaces and require the remaining 
surfaces to be adiabatic. 

3. NUMERICAL SOLUTION OF THE EQUATIONS 

Equations (7), (14), and (15) must be solved numerically. If we seek to solve 
the steady equations, in which the left sides are all zero, a double iterative procedure 
is necessary. Typically, distributions of F, 5, and tI are assumed. The linearizing 
assumption that these equations may be regarded as equations solely for F, 5, and 0 
respectively, is made. The finite difference approximations to the component 
equations are then solved iteratively until convergence is obtained. However, 
because the equations are elliptic, the solution of each is an iterative process and the 
solution procedure is, therefore, very lengthy. 

The true transient equations can be solved rather more rapidly because (7) and 
(ll), being parabolic, can be advanced through one time step by a direct, rather 
than an iterative, procedure. 

The essential feature of our method is the conversion of all equations to parabolic 
form, by the insertion of the false transient term into (12). Each equation may be 
advanced through time by a direct method and the complete solution procedure 
may be regarded as a single iterative scheme. 

3.1. Finite D$erence Approximations 

The method will be illustrated by considering the finite difference approximation 
to the equation for the x-component of vorticity. The full set of differential and 
difference equations appears in Appendix A. 
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The equation for & is 

(19) 

It will be noted that the equation is written in conservative form, i.e., in a form 
which guarantees conservation of vorticity both in the differential equation and in 
the difference approximation and, moreover, results in a somewhat simplified 
expression for convection (in comparison with that used by Aziz and Hellums [3]). 

A uniform mesh is used. Mesh point variables are typically denoted by L&j, k); 
however, the notation is rendered more compact by omitting arguments when 
they have the default values i, j or k. Thus, &(z’ - 1) denotes S1(i - l,j, k). 
Central differences are used throughout, the notation being 

and 

u1 = (L(i + 1) - 5& - l))Wx 

h2Cl = (SIG + 1) - 25, + L(i - l))/dx2. 

The finite difference approximation to (19) may now be written 

Pr x1 -- = 
ac at -UL4 - wi4 + uk4 + wk4 

- RaPr &,e + Pr(h25, + a,“& + h25A (20) 

where the transient term has not yet been discretized. In expanded form this 
becomes 

pr ?I1 _ --- 
ac at -w + 1) Mj + 1) - 4j - 1) Mj - 1w4 

- (Mk + 1) L’dk + 1) - w(k - 1) L(k - 1NP AZ 

+ W + 1) C2(j + 1) - u(j - 1) C2(j - 1N/2 4 

+ Mk + 1) 5dk + 1) - u(k - 1) Uk - 1NP AZ 

- RaPr@(j + 1) - e(j - 1))/2 dy 

+ Pr((S,G + 1) - 25, + 5,G - l)W2 

+ w + 1) - 25, + w - lwb2 

+ (L(k + 1) - 25, + 5 (k - 1))/~z2). 



METHOD OF THE FALSE TRANSIENT 443 

Boundary conditions on P and 0 are applied in the usual manner, using central 
differences and image points for derivative conditions. Vorticity boundary condi- 
tions are obtained using the technique introduced by Gosman et al., [17]. It is 
assumed that, in the vicinity of a wall, vorticity varies linearly with wall distance, 
i.e., that 

52 = 520 9 4 4 + 6x2, j, 4 - 12(l) j, Wxl~ % (21) 

for & near x = 0. Upon insertion of (21) into (17), the latter may be integrated 
over the first mesh interval to yield 

12(1, j, k) = 3 (--&(2, j, k) + LX C$J / _ )/Ax’ - 5,(2,j, W/2. (22) 
X-O 

A central difference approximation is used to evaluate (Z+/~,/ax),,, , viz. 

w2/wx=o = wll?YLO 
-(+l(Lj + 1) - W,j - 1))/(24)- 

3.2. Solution Procedure 

Equation (20) can be written 

Pr ah 

where a,, ay , a, , and s are point operators defined as follows: 

The set of point equations can then be written in matrix form as 

gg [511 = (Ax + A, + A,N,l + [s], 

where quantities in square brackets are column vectors and A, , A, , and A, are 
matrices. 

An equation of this form may be advanced through time using an alternating 
direction implicit procedure. The one we have used is a variation described by 
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Samarskii and Andreev [18] of the scheme proposed independently by Douglas 
[19] and Brian [20]. The equations to advance 5: to CT+1 are 

(I - rA,)[w**] = [co*], 

(1 - r4>b ***I = [a**], 

K:“l = Gl + 2rbJ***1, 

where r = d tar,/2Pr and LI t denotes the time increment; the w’s are intermediate 
variables. The coefficient IX< is used to enhance transient convergence as discussed 
more fully later. 

This method was chosen for its efficiency in terms of the number of operations 
required per time step. Although Chorin [2] used an even simpler scheme (reported 
in an earlier paper [21] of Samarskii), that scheme is not satisfactory because it 
contains a truncation error of order At which does not decay with time. The 
correct solution of the finite difference approximations of the steady equations 
cannot, therefore, be obtained unless prohibitively small time steps are employed. 

It can be shown that, for a single linear equation, the Samarskii-Andreev 
method is unconditionally stable. We have performed a test calculation (on a 
linear diffusion equation) in which solutions were obtained using time steps as large 
as 160 Ax2. The number of time steps to convergence rose drastically, but the 
correct steady solution was eventually reached. It is, unforunately, not possible 
to prove (or disprove) the stability of the scheme when applied to coupled, non- 
linear equations. Our experience has shown that, with suitable choices for the 
parameters 01~ and LX& , this method is superior to that of Peaceman-Rachford [22] 
for two-dimensional problems. Thomas and de Vahl Davis [lo], by computing the 
spectral radius of the amplification matrix for each equation, showed that 
the latter is stable for all At when applied to a nonlinear (natural convection) 
problem. We, therefore, conclude that the Samarskii-Andreev method is stable 
for a single equation. However, instability can still be introduced by the coupling 
between equations of a system. There are two grounds for this belief. First, we have 
observed that despite the foregoing, there is an upper limit on the usable time step 
when solving a system (in contrast to the case of a single equation). It is 0.8 Axa 
when OIL = CQ = 1, in either two or three dimensions. For any values of Ra and Pr, 
solutions can be obtained if At is chosen to satisfy this condition. Second, if this 
condition is violated, the instability can still be controlled if either ac or 01* is 
reduced; that is, the effective At for one of the equations can be increased above 
this limit, if that for another equation is reduced. This suggests that the oscillations 
which would otherwise develop must be due to an interaction between the 
equations. 
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The insertion of Pr on the left side of (14) had the effect of adjusting the develop- 
ment of the vorticity transient in cases where Pr # 1. It was found that this device 
made the total solution time more or less independent of Pr. 

3.3. Overall Solution Procedure 

The general arrangement of the solution procedure is quite simple. The main 
iterative loop starts with the advancement through one time step of !?r using Eq. 
(15). The three components $Q , & , and & are found in turn. This is followed by 
calculation of new velocity fields (Eq. (13)) and vorticity boundary conditions. A 
new 0 field is then found (Eq. (7)). Finally, new values for & , & , and 5, are 
obtained from Eq. (14). 

To start the procedure, distributions of ‘H and 8 are set, and corresponding 
values for % and U are computed for the finite difference approximations to (12) 
and (13) and the appropriate boundary conditions. The main loop is entered at the 
point where Eq. (7) is used to update the temperature field. 

The cycle is continued until convergence is reached. The sum of the absolute 
values of the changes from one iteration to the next of all mesh point values of the 
three components of Y is calculated; the corresponding quantities for [ and 0 are 
also found. These three numbers are then normalized using selected values of the 
respective quantities. Strictly speaking, we should perhaps seek the maximum value 
at each iteration. However, this seems unnecessary; instead, values are selected 
which are known to be at or near the maxima. Convergence is declared to have 
been reached when the three normalized numbers are less than some specified 
small value-typically 10-6-for two successive iterations (the last requirement 
being intended to prevent premature termination of the iterations at the turning 
point of a slowly oscillatory solution). Further checks on convergence include an 
examination of plots of transient values of selected mesh point variables. 

It should, perhaps, be mentioned that the vector potential-vorticity formulation 
for three-dimensional problems requires a large storage capacity. We carry 13 
fields--L , l2 , Ly A , A , A9 8, u, v, w, and three work spaces-for the A.D.I. 
solution algorithm (the three components of vorticity are advanced simultaneously). 
This could be reduced to eight by computing the velocities when needed and by 
solving for the three components of vorticity consecutively; however, an increase 
in solution time would be incurred. These figures are to be compared with a 
minimum of six fields if the primitive variables are used (u, v, w, p, 8, and one 
work space). Thus, for an 11 by 11 by 11 mesh, 17, 303 words are required for 
main data storage, and the total program size is approximately 32,000 words. 
Using an IBM 360/50 computer with a million bytes of core a complete iteration 
cycle for an 11 by 11 by 11 field requires about 5 sec. 
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4. EQUATIONS FOR TWO-DIMENSIONAL FLOW 

It would be useful if we could assess the speed and accuracy of the present 
method by a comparison of results with those previously obtained for three- 
dimensional flows. However, this is not possible. Chorin [2] did not carry his 
solution to steady state, commenting that this would have been excessively time 
consuming on the computer; 430 time steps were completed, but virtually no 
quantitative information is presented for the final state. Williams [l] used cylin- 
drical polar coordinates, and we have so far only programmed the rectangular 
Cartesian case. We are doubtful of the validity of the results of Aziz and Hellums 
[3], for reasons which will be discussed in Section 6. In any event, a meaningful 
speed comparison can not be made since their solution was obtained on an IBM 
7040 computer, to which we did not have access. They required about four minutes 
per iteration on that machine. Finally, Holst and Aziz [4] solved the problem of 
natural convection in a porous medium, for which the equations are somewhat 
simpler. 

Accordingly, tests were conducted on related two-dimensional problems. Of 
course, accuracy is a feature of the spatial finite difference approximations, rather 
than of the technique used to find the steady solution. Since we have ensured 
that the transient terms decay to zero, it would be expected that quadratic con- 
vergence would be achieved by the use of central spatial differences and that the 
false transient method would have no effect on this. Convergence was investigated 
during a study of false diffusion in numerical fluid dynamics. The results have 
been reported elsewhere [23], although the method was not described. It was 
found that quadratic convergence is achieved provided that the nonlinear terms 
do not cause a thin boundary layer to form; in such cases, convergence becomes 
approximately linear and a nonuniform mesh is recommended. 

We are principally concerned here with the transient behavior of the method, 
and to examine this we used the problem of natural convection in a rectangular 
enclosure heated from the side. The governing equations for this problem may be 
obtained directly from the three-dimensional equations presented before. Setting 
v and all y-derivatives to zero, these become 

Pr ati _ --- 
ac at 

- $ (u<,) - g (w&J + RaPr g + Pr (!j$ + -$j$), (23) 

1 a*, _ as --_- 
a* at ax2 

+ w2 -+ 52, (24) 

ae w9 a(d) a20 a20 
at=-?%-- F+@+az"' (25) 
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The boundary conditions are obtained in a similar manner from those presented 
in Table I. It may be noted that & , the only nonvanishing component of the vector 
potential, becomes the familiar two-dimensional stream function. 

TABLE 1 

Boundary Conditions for y and % at Impermeable Nonslip Walls 

x = 0,l y=O,Y z=o,z 

5. TRANSIENT CONVERGENCE AND ECONOMY 

The characteristics of the method were studied using the natural convection 
problem described in the previous section. This enabled our results to be compared 
with those of Rubel and Landis [I 11, who solved the following equivalent system 
of equations: 

a&v2 f& 
( 1 ax a~ 

- 2 V2 (2) = -RaPr +x+ Pr V2#, , 

@2 a8 a+2 88 v2(9 -----= . 
ax a2 az ax 
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TABLE II 

Summary of Two-Dimensional Solutions for the “Window” Problem Solved 
Using a 21 by 51 Mesh (Assuming Antisymmetry) on a CDC 6600 Computer 

Run no. Ra Pr 
Number of Solution Starting 

At/Ax2 iterations time (set) conditions 

1 60,000 

2 120,000 

3 180,000 

4 240,000 

5 120,000 

6 180,000 

7 240,ooO 

8 300,000 

9 180,000 

10 300,000 

11 360,000 

1 

1 

I 

1 

2000 

2000 

2000 

6 

6 

6 

0.025 6 211 29.4 Rest 

0.025 6 243 33.7 Run 1 

0.01 10 262 36.3 Run 2 

0.01 10 373 51.8 Run 3 

0.025 4 291 40.6 Rest 
0.025 4 214 29.9 Run 5 

0.025 4 215 30.0 Run 6 

0.025 4 196 27.4 Run 7 

0.025 4 209 29.0 Rest 

0.025 4 216 30.1 Run 9 

0.025 4 206 28.7 Run 10 

Total solution time = 366.9 

They used a generalized Newton’s method to solve the fourth-order nonlinear 
difference approximation to (28) coupled to a relaxation procedure in a combined 
inner and outer iteration scheme. Calculations were performed on a CDC 6600 
computer, and advantage was taken of the symmetry of the problem to halve the 
solution domain. For an aspect ratio of five, solutions were obtained for the 
combinations of Ra and Pr listed in Table II. They reported that about 12 set 
were required for each iteration of (28), and that there were from one to three 
inner iterations for each outer iteration; from 25 to 200 outer iterations were 
required for each solution. The total production time for the 11 cases in Table II 
was 2.5 hr. 

Initially, calculations were performed using 01~ = 01~ = 1, but at high Ra and 
low Pr the solution fields oscillated, the rate of decay being very slow. Adjustment 
of the transient had a pronounced effect on these oscillations. Reducing 01$ in- 
creased the rate of decay of the oscillations but decreased their frequency, causing 
slow rates of change of the solution fields. This resulted in either premature 
termination of the iterations or excessive computation times. Reasoning that the 
oscillations were driven by the source term in the vorticity equation (as implied 
by the discussion in the final paragraph of Section 3.2), 01~ was reduced. This 
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damped the oscillations and their frequency was now relatively unaffected. As 
CY~ was reduced, the time step could be increased, as shown in Table II, and the 
total solution time was lowered considerably. It can be seen that the effective 
values of dt/& were 0.1-0.15 for the vorticity equation and 4-10 for the stream 
function and energy equation. In other words, the effective time step for the latter 
equations was increased above the empirical limit of 0.8 dx2 by the same factor 
as it was reduced for the vorticity equation. It should be pointed out that such 
oscillations can be reduced only if a steady solution exists as was known to be the 
case for this problem. 

a b c 

FIG. 2. Two-dimensional solutions for the “window” problem. Aspect ratio = 5. (a), (b) 
Contours of stream function and temperature for the case Ra = 300,000 and Pr = 6. Contour 
levels for $I are 10, 25, 36,44, and 47. Contour levels for 8 are 0.1(0.1)0.9. (c), (d) Contours for 
the case Ra = 180,000 and Pr = 1. Contour levels for & are 5, 20, 30,32, 34, and 38. Contours 
for 0 as in (b). 

58x/12/4-2 
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Typical solutions are shown in Fig. 2. It was found that the oscillations were 
associated with the appearance of the small cells which can be seen in Fig. 2c 
near the top and bottom of the cavity, and which develop at high values of the 
Grashof number Gr = Ra/Pr. It seems that this problem was a particularly severe 
test of the method, since natural convection problems with other thermal boundary 
conditions have been readily solved at even higher parameter values with a 
minimum of adjustment of (Y~ . 

To evaluate the economy of the method, the eleven cases solved by Rubel and 
Landis were also run on a CDC 6600. The results are summarized in Table II. 
The average time for each iteration was 0.15 set, and the total production time was 
0,102 hr. Symmetry was assumed and convergence criteria equivalent to those of 
Rubel and Landis were used; the fact that convergence was reached was verified 
by decreasing the convergence criterion by an order of magnitude and observing 
that the solution changed only in the fifth significant figure relative to the function 
maxima. A similar effect was reported by Rubel and Landis. Based on these results 
it appears that at the time the tests were performed this method was 25 times as fast 
as that used by Rubel and Landis. Conservatively, therefore, we suggest an order 
of magnitude increase in speed has been obtained. However, a number of im- 
provements to the coding have been made since then. Tests on our computer 
indicate that a further factor of at least two has been achieved. 

The reduced computing time required by this method is attributed to the use of 
a single, rather than a double iterative scheme, and to the stability of the A.D.I. 
procedure, which enables the false transient to be selected in a manner which 
enhances the rate of transient convergence. 

6. APPLICATION TO A THREE-DIMENSIONAL PROBLEM 

The problem described in Section 5 has been the subject of numerous analytical 
and numerical investigations (e.g., [6, 7, 10, 11, 24-311). In all of these, it has 
been assumed that the motion is adequately described by a two-dimensional 
model in which variations in the y-direction of Fig. 1 are neglected. Even ex- 
perimental studies (of which Brooks and Probert [23] provide a recent summary) 
generally imply that the motion is expected to be two-dimensional by their use of 
an interferometer to explore the temperature distribution. It is of interest, therefore, 
to obtain a three-dimensional solution in order to test this assumption. 

The basis for the belief that the flow is two-dimensional is that the cavity is 
“long” in the y-direction and that the boundary conditions are uniform. It has, 
of course, been recognized that the end walls would have some effect, but it has 
been hoped that such effects would be confined to short regions near the walls, 
and that over most of the cavity they could be ignored. Solutions have, therefore, 
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FIG. 3. Particle tracks for a three-dimensional solution of the “window” problem for the 
case Ra = 10,000, Pr = 1, Y = 5, 2 = 5, solved using an 11 by 21 by 21 mesh. (a) Particle 
released at (0.5, 4.5, 3.0). (b) Particle released at (0.7, 4.25, 0.5). 



b 

d 

FIG. 4. Temperature contours for the problem of Fig. 3 at various cross-sections. Levels as 
in Fig. 2. (a) y = 0; (b) y = 0.25; (c) y = 2.5; (d) x = 0.5. 
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been obtained for a cavity in which Y = 5 and 2 = 5. This is a shape which is 
typical of many of the experimental studies. 

The description of a three-dimensional motion in a two-dimensional journal 
is not easy, We have obtained contour plots of all the computed quantities at a 
number of horizontal and vertical cross-sections of the cavity, but these do not 
permit a visualization to be readily obtained. Fig. 3 shows the tracks of two particles 
released near the end wall y = 5. Although such a display is less quantitative than 
the contour plots, it seems to be more graphic. The technique for obtaining 
particle tracks is described in Appendix B. 

The particle of Fig. 3(a) was released at the point (0.5,4.5,3.0). It moves towards 
the center of the cavity in a fairly narrow spiral. The horizontal motion ceases near 
the center plane, and the spiral grows in size. When the particle track approaches 
the walls of the cavity, a longitudinal motion in the reverse direction is acquired 
which carries the particle back towards the wall y = 5. There, an inward spiral 
returns the particle to the vicinity of its starting point. It might be expected that 
the particle should return precisely to its starting point, but as discussed by 
Truesdell [13], p. 17, there is no a priori reason why the vector lines of a solenoidal 
field should be closed. 

Figure 3(b) shows the track of a particle which was released further from the 
horizontal axis of the cavity, at the point (0.7,4.25,0.5). The motion is more 
complex, and even harder to visualize. The particle performs three cycles of the 
type displayed in Fig. 3(a) before it approaches the center plane. 

2 

NU 

1 

0 

I I I I 

Y------ 

FIG. 5. Variation of vertically averaged Nusselt number across the window for the case of 
Fig. 3, showing that the thermal effects of the three-dimensional motion are confined to regions 
of size less than one cavity thickness near each end wall. 
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The principal conclusion to be drawn is that three-dimensional flow exists 
throughout the entire cavity. Only when a particle is released on the center plane 
does it fail to acquire a y-component of velocity. It is now of interest to examine 
the effects of this motion on the temperature fields. 

Figure 4 shows contour maps of the temperature on the planes y = 0,0.25, and 
2.5 and x = 0.5. It can be seen that within a region of the order of one cavity 
width from the end walls, the temperature pattern approaches that due to con- 
duction alone. This is clearly a consequence of the viscous effects near these walls 
which reduce the velocities in the x - z plane and thereby reduce the convective 
distortion of the temperature field. The y-components of velocity are also due to 
these effects, but do not appear to have a direct effect on the temperature field 
because the fluid still follows the basic cellular pattern observed in two-dimen- 
sional studies. A quantitative measure of the effect of the end walls can be seen 
in Fig. 4(d) and also in the variation of the vertically averaged Nusselt number 
over the plane x = 0, shown in Fig. 5. This parameter, which is of practical 
importance, is related to the normal temperature gradient at the surface. It can be 
seen that, near the end walls, there is a significant decrease in Nu, but it was found 
that the overall average value was only 5.5 % less than the value at y = Y/2. 

Many of the earlier two-dimensional studies considered a cavity of square 
cross-section. A solution was, therefore, obtained for a cavity in which Z = 1, 
and we chose to set Y at 2. Particle tracks for this situation are shown in Fig. 6. 
A plan and end elevation have been included. The motion is generally similar to 
that described previously. It will be noted from the end elevation, however, that 
the longitudinal spirals are no longer on the central axis of the cavity. There are, 
in fact, two such spirals in each end of the box, and the double cellular motion 
observed in two-dimensional solutions at the higher values of Gr is seen to be a 
contraction of a much more complex flow. 

It appears from these limited results that the heat transfer rates are reasonably 
well predicted by two-dimensional solutions. However, the motion is highly 
complex and it is clear that a full three-dimensional study is necessary in order 
that it be properly understood. 

Mention should be made of the results of Aziz and Hellums [3], who studied 
natural convection in a cubical container which was heated from below, cooled 
from above, and had adiabatic side walls. They examined a range of Rayleigh 
numbers, the maximum of which was only 3500. Recently, Catton [33] calculated 
a lower bound of 3446 for the critical Rayleigh number with these boundary 
conditions. The strength of the motion computed by Aziz and Hellums is, therefore, 
somewhat surprising. Moreover, they obtained a Nusselt number of 1.88 using 
an 11 by 11 by 11 mesh. They found that refining the mesh in two dimensions 
led to a significant decrease in Nu, and this would also be expected in three 
dimensions. Nevertheless, their result is still in conflict with the experimental work 
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FIG. 6. Particle tracks for the case Ra = 150,000, Pr = 1, y = 2, Z = 1, solved using a 
15 by 15 by 15 mesh. Particle released at (0.3, 1.87, 0.558). (a) Perspective view; (b) plan; (c) end 
elevation. 

of Catton and Edwards [34]. (Although this was performed using a cavity of 
hexagonal plan-form, the results can be expected to be indicative of those for a 
cube since the hydraulic diameter of the hexagon was approximately equal to its 
height.) The critical Rayleigh number was found by them to be about 3500 (in 
good agreement with Catton’s later analysis), and at Ra = 10000, Nu was found 
to be about 1.78. We found that for Pr = 1 .O the fluid was stable to any disturbance 
at Ra = 3500 and motion persisted at Ra = 3600; at Ra = 7000, Nu = 1.58; 
and at Ra = 10000, Nu = 1.80. 

We have not made an exhaustive study of the stability of a layer of fluid heated 
from below. However, it is evident that there are substantial differences between 
the results of Aziz and Hellums, on the one hand, and those of Catton, Edwards, 
Mallinson and de Vahl Davis, on the other. We cannot explain these differences. 

APPENDIX A: THE COMPONENT EQUATIONS 

A.1. The D@erential Equations 

Equations (7), (13)-(15) may be expressed as ten partial differential equations 
for the ten dependent variables, I&, I!&, &, &, &, I/~, 0, u, v and w. For 
rectangular Cartesian coordinates and for i = k, these may be written 
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the finite difference approximations to the equations of Section A.1 are 

Pr ati --= 
a< at -(4j + 1) L(j + 1) - u(j - 1) 5dj - 1W 4 

- (w(k + 1) 5,@ + 1) w 1) 5,@ 1))/2 flz - - - 
+ @(j + 1) LJj + 1) - 4j - 1) L(j - 1))/2 4 
+ w + 1) t-3@ + 1) - 4k - 1) S,(k - OY2 A.7 
- RaPr(&j + 1) - e(j I))/2 AY + PrY%d, - 

Pr x2 --= 
ac at -(u(i + 1) iz(i + 1) - u(i - 1) C?Ji - 1))/2 Llx 

- (w(k + 1) 52(k + 1) - w(k - 1) 5,(k - 1))/2 h 

+ (v(i + 1) &(i + 1) - v(i - 1) &(i - 1))/2 Llx 

+ w + 1x3 + 1) - 4k - 1) 5,@ - I))/2 AZ 

+ RaPr(B(i + 1) - e(i - 1))/2 dx + Pr Y?(&J, 

Pr x3 --= 
ac at -(u(i + 1) &(i + 1) - u(i - 1) &(i - 1))/2 Llx 

- Mj + 1) 5dj + 1) - 4j - 1) W - I))/2 dY 
+ (w(i + 1) &(i + 1) - w(i - l&(i - I))/2 dx 

+ (4j + 1) Uj + 1) - 4j - 1) 5dj - 1NP dy 
+ Pr JYL), 

ae 

at= 
-(#(i + I) e(i + 1) - u(i - I) e(i - 1))/2 AX 

- (4.i + 1) e(j + 1) - f-0 - 1) e(j - W2 4~ 

- cw(k + I) e(k + I) - + - 1) e(k - 1))/2 dz + p(e), 
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u = <#dj + 1) - !w - 1w dY - (#,(k + 1) - VW - 1w & 

v = (gLdk + 1) - qh(k - 1))/2 AZ - (&(i - 1) - &Xi - 1))/2 Ax, 

w = ($20 + 1) - 926 - 1NP Ax - <$l(j + 1) - $h<i - 1))/2 4. 

APPENDIX B: PARTICLE TRACKING 

In steady flow, the particle paths are given by the equations 

dxlu = dyiv = dzlw. 

(The paths could also be found from the intersection of the surfaces (9) and (10). 
However, the calculation off and g from F is quite complex and the procedure 
adopted is more straightforward.) 

Using ii = dF/dt, these equations are integrated numerically by the modified 
Euler method, which is simple and adequate for the purpose. Denoting the nth 
point along a particle path by Z, , and the mth estimate of X, by x7, the integration 
algorithm is 

-1 x,+1 - x, = dt(i@,)), 

z:yT; - x, = Llt(ii@J + E(X,m))/2, m = 1, 2 ,..., k, 

where k is such that the difference between successive estimates of the new position 
is less than a specified small quantity, typically 1O-5. To limit the particle movement 
during one integration step, the time interval is chosen to satisfy 

dt = O.ldx/max(l 24 1, 1 v 1, ( w I). 

These criteria were found, after some experimentation, to yield satisfactory results 
for a given vector potential field. 

It is necessary to construct the velocity field from the vector potential field. The 
obvious approach is to calculate the velocities at the mesh points and then to 
interpolate. However, the resultant velocities do 

4z + e,yz +J’~x + g,xy + hmz, i = 1, 2, 3, 

where the coefficients ai , 

bi , etc. are given in an obvious manner by the mesh point 
values of #i . The velocity components are then obtained by differentiation. It can 
be seen that they satisfy continuity. 
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A further improvement, which has been found to yield smoother tracks, is the 
construction of a refined !?r field using interpolation. Typically, an 11 by 11 by 11 
mesh would be expanded to 31 by 31 by 31 before entering the tracking procedure. 
It may be of interest to note that the generation of the track shown in Fig. 3(a) 
required about 40 set of CPU time on the 360/50. 

It should also be pointed out that Figs. 3 and 6(a) are perspective views, using 
the transformation given in [35]. 
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